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Abstract

This year’s challenge addresses the problem of remaining useful lifetime (RUL) prediction in
a fleet of aircraft engines under conditions of high variability in the flight envelope and multiple
failure modes. The task is to develop a data-driven model to estimate RUL using the condition
monitoring data as input. The challenge uses a subset of the run-to-failure degradation trajectories
of the N-CMAPSS dataset [1].

1 Summary
Given here is a dataset containing full flight profile data for 100 aircraft experiencing different types of
slowly developing faults that initiate at some time during the flight history. There are seven different
failure modes. The task is to train a model to estimate the time to failure using the data in the
development dataset. Test on data in the test dataset. Validation is done with a validation dataset that
is being released for one-time assessment at the end of the data challenge. Scoring of performance (train,
test, and validation) is done through a web interface at phmsociety.org (exact link to be determined)

2 System description
The system under analysis corresponds to a high-bypass, twin-spool commercial turbofan engine. The
engine consists of six main components: fan, low-pressure compressor (LPC), high-pressure compressor
(HPC), combustor or burner, high-pressure turbine (HPT), and low-pressure turbine (LPT). The HPC
and HPT are connected through the core shaft or high-speed shaft; the fan, LPC, and LPT are all
connected to the fan shaft or low-speed shaft [2]. In addition to these turbo-machinery components and
the combustor, the engine has an inlet at the front, a nozzle at the rear, a bypass duct, a variable-sized
inter-stage bleed valve, a set of variable-angle stator or guide vanes, and a number of cooling bleeds.
Figure 1 shows a schematic representation of the engine along with the corresponding location of the
sensor reading and the station numbers as defined in the CMAPSS model documentation [3].

3 Data description
The N-CMAPSS Challenge dataset provides synthetic run-to-failure degradation trajectories of a fleet
of turbofan engines with unknown initial health states subject to real flight conditions. The dataset
was generated with the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) model
[3]. Each unit of the fleet has unknown and different initial health conditions and experiences different
types of slowly developing faults that initiate at some time during the flight history. Concretely, all
the rotating sub-components of the engine, i.e., fan, low-pressure compressor (LPC), high-pressure
compressor (HPC), low-pressure turbine (LPT), and high-pressure turbine (HPT), can be affected by
degradation in flow and efficiency. The dataset contains real flight conditions as recorded on board a
commercial jet (i.e., w). The units are divided into three flight classes depending on whether the unit

1



Figure 1: Schematic representation of the turbofan engine model.

is operating short-length flights (i.e., flight class 1), medium-length flights (i.e., flight class 2), or long-
length flights (i.e., flight class 2) (see Table 1). A number of real flight conditions are available within
each of the flight classes. Figure 2 shows a typical flight profile given by the scenario-descriptor variables
w: altitude (alt), flight Mach number (XM), throttle-resolver angle (TRA), and total temperature at
the fan inlet (T2). Each flight cycle contains recordings of varying lengths, covering climb, cruise, and
descend flight conditions (with alt > 10, 000 ft) corresponding to different flight routes operated by the
aircraft. The remaining units of the fleet follow similar flight traces.

Flight Class Flight Length [h]
1 1 to 3
2 3 to 5
3 > 5

Table 1: Overview of the flight classes

3.1 Data records
The N-CMAPSS Challenge dataset contains nine sets of data covering run-to-failure degradation
trajectories from 100 units and seven different failure modes affecting the flow (F) and/or efficiency
(E) of the rotating sub-components. Table 2 provides an overview of failure modes with each of
the sets of data. Each set of data is stored in a Hierarchical Data Format version 5 (HDF5) file.
The dataset is accessible publicly at the repository1: https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/. Scripts in the form of Jupyter notebooks are also available in
the data repositories to demonstrate how to load the data.

Each data file provides two sets of data: the development dataset and the test dataset. Each
of them contains the following types of variables: the operative conditions w, the measured signals xs,

1DS02 is also included in the data repository but it is excluded from the Challenge dataset
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Figure 2: Example of a flight traces of altitude, flight Mach number (XM), throttle–resolver angle
(TRA) and total temperature at the fan inlet (T2) covering climb, cruise and descend flight conditions

the RUL label, and the auxiliary data (i.e., the unit number u and the flight cycle number c and the
flight class Fc). In addition, the name of the variables within w, xs, and the auxiliary data is provided.
Table 3 shows an overview of the variables stored in each .h5 file.

Name # Units Failure Fan LPC HPC HPT LPT
Modes # E F E F E F E F E F

DS01 10 1 X
DS03 15 2 X X X
DS04 10 3 X X
DS05 10 4 X X
DS06 10 5 X X X X
DS07 10 6 X X
DS08a 15 7 X X X X X X X X X X
DS08c 10 7 X X X X X X X X X X
DS08d 10 7 X X X X X X X X X X

Table 2: Overview of the datasets

Tables 4–6 provide the name, description and units of each input variable in the dataset. The
variable symbol corresponds to the internal variable name in the CMAPSS model. The descriptions
and units are derived from the model documentation [3]. RUL is provided in units of cycles.
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Development data (D)
Name Description
W_dev Scenario descriptors - w
X_s_dev Measurements - xs
Y_dev RUL [in cycles]
A_dev Auxiliary data

Test data (DT ∗)
Name Description
W_test Scenario descriptors -w
X_s_test Measurements - xs
Y_test RUL [in cycles]
A_test Auxiliary data

Variables Name
Name Description
W_var w variables
X_s_var xs variables
A_var Auxiliary variables

Table 3: Variable names in .h5 files

# Symbol Description Units
1 alt Altitude ft
2 Mach Flight Mach number -
3 TRA Throttle-resolver angle %
4 T2 Total temperature at fan inlet ◦R

Table 4: Scenario descriptors (i.e., flight data) - w

# Symbol Description Units
1 Wf Fuel flow pps
2 Nf Physical fan speed rpm
3 Nc Physical core speed rpm
4 T24 Total temperature at LPC outlet ◦R
5 T30 Total temperature at HPC outlet ◦R
6 T48 Total temperature at HPT outlet ◦R
7 T50 Total temperature at LPT outlet ◦R
8 P15 Total pressure in bypass-duct psia
9 P2 Total pressure at fan inlet psia
10 P21 Total pressure at fan outlet psia
11 P24 Total pressure at LPC outlet psia
12 Ps30 Static pressure at HPC outlet psia
13 P40 Total pressure at burner outlet psia
14 P50 Total pressure at LPT outlet psia

Table 5: Measurements - xs
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# Symbol Description Units
1 unit Unit number -
2 cycle Flight cycle number -
3 Fc Flight class -
4 hs Health state -

Table 6: Auxiliary data

4 Challenge formulation

Given are multivariate time-series of sensors readings Xsi = [x
(1)
si , . . . , x

(mi)
si ]T and their corresponding

remaining useful life label (RUL) i.e., Yi = [y1i , . . . , y
mi
i ]T from a fleet of N = 60 units (i = 1, . . . , N).

Each observation x(t)si ∈ Rp is a vector of p sensor readings taken at operating conditions w(t)
i ∈ Rs.

The length of the sensory signal for the i-th unit is given by mi, which can, in general, differ from
unit to unit. The total combined length of the available data set is m =

∑N
i=1mi. More compactly,

the available dataset development dataset is denoted as D = {Wi, Xsi , Yi}Ni=1. Given this set-up, the
task is to obtain a predictive model G that provides a reliable RUL estimate (Ŷ ) on a test dataset
of M = 40 units DT∗ = {Wj∗, Xsj∗}Mj=1, where Xsj∗ = [x1sj∗, . . . , x

kj
sj∗] are multivariate time-series of

sensors readings taken at operating conditions wj∗. The total combined length of the test data set is
m∗ =

∑M
j=1 kj .

NOTE 1: The use of the full development dataset for training is not a requirement. The participants
can use any subset of the development data they consider convenient from model training.

4.1 Evaluation metric
Evaluation of the model performance will be carried out using an independent validation dataset
D∗V = {Wi, Xsi , Yi}

NV ∗
i=1 that is being released for one-time assessment at the end of the data challenge.

The metric of evaluation is an aggregation of two common evaluation metrics used to compare the
prognostics results: root-mean-square error (RMSE) and NASA’s scoring function [4] (s):

score = 0.5 ·RMSE + 0.5 · sc (1)

RMSE =

√√√√ 1

mv∗

mv∗∑
j=1

(∆(k))
2 (2)

sc =
1

mv∗

mv∗∑
k=1

exp(α|∆(k)|)− 1, (3)

where mv∗ denotes the total number of validation dataset, ∆(k) is the difference between the
estimated and the real RUL of the k sample (i.e., y(k) − ŷ(k)), and α is 1

13 if RUL is under-estimated
and 1

10 , otherwise. The resulting s metric is not symmetric and penalizes over-estimation more than
under-estimation.

4.2 Results Submission
The RUL estimates on the validation dataset DV∗ need to be submitted as a csv file contating one
single columm (i.e., mv∗ × 1) to http//:... for evaluation.

5

http//:...


References
[1] Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink. Aircraft Engine Run-to-Failure

Dataset under Real Flight Conditions for Prognostics and Diagnostics. Data, 6(1):5, 2021.

[2] Ryan May, Jeffrey Csank, Thomas Lavelle, Jonathan Litt, and Ten-Huei Guo. A high-fidelity
simulation of a generic commercial aircraft engine and controller. In 46th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, page 6630, 2010.

[3] Dean K Frederick, Jonathan A Decastro, and Jonathan S Litt. User’s Guide for the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS). Technical report, NASA, 2007.

[4] Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage propagation modeling for
aircraft engine run-to-failure simulation. In 2008 International Conference on Prognostics and
Health Management, pages 1–9. IEEE, 2008.

6


	Summary
	System description
	Data description
	Data records

	Challenge formulation
	Evaluation metric
	Results Submission


